
Private Set Intersection
Bradley Cushing
New York University

Courant Institute of Mathematical Sciences
bsc6146@nyu.edu

This is a working draft (last updated on 5/9/2025) and summary of research
which may contain incomplete information and incorrect or limited references
to external sources. As a result, until this disclaimer is removed, nothing stated
in this document should be considered as complete.

Abstract

Private Set Intersection (PSI) is a secure Multi-Party Computation (MPC)
protocol that allows n parties to compute the intersection of n sets of ob-
jects, where at the end of the protocol each party learns the intersection of
these sets but nothing more. This application of MPC has been an active
area of research over the past 20 years where many variants of PSI using
different primitives have been studied. This work attempts to introduce
some of the different approaches to building PSI protocols, their variants,
and the underlying primitives, giving the reader an understanding of many
of the ways it can be achieved.

1 Introduction
In this paper we cover different protocols for PSI and the primitives used to build
them. In Section 2 we discuss “Private Preference Matching”, “PSI from Ran-
dom Garbled Bloom Filters”, “OT-Based PSI from PEQT”, “Private Matching
from Homomorphic Encryption”, “Multi-party PSI from Symmetric-Key Tech-
niques”, “Updatable Private Set Intersection”, and “Structure-Aware PSI and
Fuzzy Matching”.

In Appendix A we cover the primtives used the build each of the proto-
cols in detail. These primitives include oblivious transfer (OT), random OT,
OT extension, oblivious polynomial evaluation (OPE) built from additive ho-
momorphic encryption, oblivious pesudorandom functions (OPRF), oblivious
programmable pesudorandom functions (OPPRF), oblivious psudorandom gen-
erators (OPRG), Cuckoo hashing, and Bloom filters.

1

1.1 Motivation
The primary motivation for this survey is to explore in enough detail, some
of the different techniques and primitives that are used to bulid PSI protocols
with semi-honest security. While some of the ideas overlap a bit between each
protocol, the main ideas behind them are mostly disjoint, and complement each
other well. We assume no prior knowledge of PSI or any of the key primitives
that are used to build it.

1.2 Definition
Two-party PSI is a protocol π, where party Pi has a set of size n and party Pj

has a set of size m, where n doesn’t necessarily equal m. We model this protocol
[5] in terms of it’s ideal functionality.

Functionality:
• Two parties, P1 with a set size n, P2 with a set size m.
• Wait for input X from party P1 and Y from party P2.
• Output X ∩ Y to both parties.

The goal of each of the protocols that we present in this paper is to realize this
ideal functionality securely, through the use of cryptography. When a protocol
implements a different functionality, like multi-party PSI, we state it explicitly
in the same place the protocol is covered. We do the same for some slight
variants like PSI aimed at finding the cardinality of the intersection or in the
case of fuzzy search of rows in a database.

1.3 Adversary models
1.3.1 Semi-honest security

There are several ways to model security in MPC and specialized PSI protocols.
We primarily focus on the semi-honest (i.e. honest-but-curious) security model
where adversaries may collude with each other but must otherwise, honestly
follow the rules of the protocol. We give light proofs of security in this model
by means of indistinguishability and ideal functionality arguments.

We say a protocol π is secure in the semi-honest model if we can build
a simulator s.t. the views of the adversaries participating in the protocol are
the same as the views of the adversaries interacting with a simulator. More
formally, V iewS(π(x⃗)) ≡ Sim(x⃗s, f(x⃗)) where the simulator is given the input
of the adversaries and the output of the function f , computing the intersection.
In a two-party protocol we only need to consider that one of the parties may
be an adversary. In a multi-party protocol with n parties, we may have up to
n− 1 adversaries.

2

1.4 Generic MPC
Our work is focused on building more efficient, custom PSI protocols. We note
that PSI can be built from generic MPC protocols including but not limited to
Yao’s Garbled Circuits, GMW, and BGW. While this is possible, less versatile,
custom protocols that depend on the structure of the problem can achieve better
communication and computational overhead.

1.5 Intuition
We first give the most basic technique for achieving PSI between two parties
and explain where there is room for improvement. Consider two parties, P1

with a set X, and P2 with a set Y . P1 computes the set HX = {H(x)|x ∈ X}
using an agreed upon hash function H, and sends it to P2. P2 does the same,
computing HY for Y , and and sends HY to P1. Now each party can compare
the values of HX and HY independently, finding those that match, and learning
the intersection.

At first glance this seems secure when H is modeled as a random oracle. P1

learns nothing if H(x) /∈ HY , and symmetrically P2 learns nothing if H(y) /∈
HX . We note that it is secure as long as the input sets have high entropy
[11], but in practice this is often not the case. Since any party can evaluate H
non-interactively, this protocol is susceptible to a brute force dictionary attack.
Nothing prevents party Pi from precomputing HZ for any set Z, and learning
the intersection for anything they would like.

2 Protocols
2.1 Private Preference Matching
A protocol for “Private Preference Matching” [9] was first introduced in 1999,
based on the Diffie-Hellman key exchange protocol. This is an interactive proto-
col which allows us to evaluate a function between two parties to compare items
in a set. We note the importance of interaction in any PSI protocol to avoid
dictionary attacks. We give the basic construction and explore some variants.

Protocol. Consider two parties Alice and Bob who would like to learn the
intersection of items in their respective sets. More formally, Alice has the list
x1, . . . , xn and Bob has the list y1, . . . , ym, where at the end of the protocol π,
both Alice and Bob learn xi = yj for any i ≤ n, j ≤ m but nothing else.

Let G be a group and H : {0, 1}∗ → G be a hash function, with all operations
in mod p. Alice and Bob privately sample a, b

R← G, respectively. Alice sends
H(x1)

a
, . . . , H(xn)

a to Bob. Bob sends H(y1)
b
, . . . , H(ym)

b to Alice. Bob sends
H(x1)

ab
, . . . , H(xn)

ab to Alice. Alice sends H(y1)
ba
, . . . , H(ym)

ba to Bob. Both
output xi, yj where H(xi)

ab
= H(yj)

ba.

3

Note that Alice and Bob both have H(xi)
ab and H(yj)

ba for all i ≤ n, j ≤ m.
If H(xi)

ab
= H(yj)

ba, then xi = yj . Assuming order is retained in the sending
of messages at each step of the protocol, both Alice and Bob know their own
preimage xi, yi respectively. Therefore, they each learn and output the shared
preimage of H(·)ab = H(·)ba, where each preimage is in the intersection.

Security. From the perspective of Alice, there are two cases where either
H(xi)

ab
= H(yj)

ba or H(xi)
ab 6= H(yj)

ba. For the first case Alice would have
received H(yj)

b from Bob where yj is in the intersection. The simulator has
f(x⃗, y⃗) and so it can sample b R← G and send H(yi)

b to Alice. For the m−|f(x⃗, y⃗)|
values not in the intersection, the simulator samples ri

R← G for the i-th item
not in the intersection and sends H(ri)

b which has the same distribution. If we
model H as a random oracle confined to some group G, by the one-more gap
Diffie-Hellman assumption [3], the values not in the intersection look random
to Alice. Therefore, we can simulate Alice’s view and by a symmetric argument
simulate Bob’s the same way, so the protocol is secure.

Variants. By permuting the items at different steps we can also create variants
of this protocol which compute something different, changing the output of f
and what each party learns during the process. We can learn the cardinality
of intersection if both parties randomly permute their sets before sending them
in steps 2-5. The intuition is that since either party doesn’t have access to
the other’s secret, anything they receive looks random and since the lists are
permuted they can no longer rely on their original, local ordering.

2.2 PSI from Random Garbled Bloom Filters
It was shown that Bloom filters and garbled Bloom filters can be used together
to create a two-party PSI protocol [4] in the semi-honest model for large sets.
We explain an improved protocol below from 2013 using an extension called the
random garbled Bloom filter (RGBF) and an oblivious pseudorandom generator
(OPRG) [13], both covered in section 3, which allow us to reduce some of the
necessary computation even further.

Protocol. The idea is for two parties to generate a shared view of the intersec-
tion by interactively building their own RGBF. Each RGBF can then be used
to compute a random value for each entry in their respective input sets. These
random values will match for any two distinct values that are present in both
sets so can be used to compute the intersection.

Consider two parties P1 and P2 with equal sets of size n for simplicity. Both
parties generate their own regular m-bit Bloom filters Fx and Fy, respectively.
They then evaluate a m instances of an OPRG, P1 using Fx[i] and P2 using
Fy[i] as input for the i-th instance. Each party uses the output ri ∈ {0, 1}ℓ of
the OPRG to build their own RGBF s.t. the i-th output maps to Rx[i], Ry[i],
respectively. Remember that if both input 1 for the same instance of the OPRG

4

then their received output will be the same random string. Note that there will
be some values where both Fx[i] = Fy[i] = 0 and the OPRG will output ⊥ to
both P1 and P2, so we can ignore all the computation for this case, making this
construction more efficient.

It’s now possible for P1 to compute mP1 [j] =
⊕κ

i=1 Rx[hi(xj)] where hi is
the i-th hash function for the RGBF and xj is item j in the input set X for some
j ≤ n. P1 randomly permutes the ℓn-bit string mP1 and sends it to P2. Now
P2 is able to compute mP2 [j] =

⊕κ
i=1 Ry[hi(yj)] for each yj in it’s own input

set Y for some j ≤ n and check if mP2 [j] ∈ mP1 . Correctness comes from the
fact that whenever Fx[i] = Fy[i] = 1, then Rx[i] = Ry[i] and so mP1 [i] = mP2 [j]
when xi = yj for some i, j ≤ n.

Security. When considering the security of P2, we can observe that the view
of P1 is just the random set of values received when interacting with P2 using
the OPRG. In this case the simulator can just send random values to P1 when
it’s input bit to the OPRG is 1 and otherwise send ⊥.

For security of P1, we consider the view of P2 which is also these random
values but additionally contains the output in the second phase. This output
consists of the XOR values from the RGBF for each item in the input set X of
P1. These values look random to P2 for any value xi 6= yj for any i, j ≤ n or are
the same as values in its own RBGF when xi = yj and so they are both easy to
simulate, the latter given the internal state of P2.

2.3 OT-Based PSI from PEQT
There’s an efficient PSI protocol [13] from 2014 based on oblivious transfer
(OT), which comes directly from private set inclusion, itself built on a protocol
for private equality testing (PEQT). The protocol is made even more efficient
through the use of a stronger form of balanced hashing called Cuckoo hashing
[12]. This technique allows us to limit the number of comparisons between in-
put elements, resulting in a smaller number of OTs. We first explain how to
build the simpler PEQT protocol, extend it to one for private set inclusion, and
finally an efficient protocol for private set intersection.

PEQT. The goal of PEQT is to determine if x = y, given a single input x from
P1 and a single input y from P2. P1 and P2 start the protocol by engaging in a
random

(
2
1

)
OT σ

ℓ where |x| = |y| are both σ-bit strings for simplicity. P2 uses
the σ bits of y as it’s selection string in the OT protocol, receiving siy[i] from
the randomly generated ℓ-bit strings (si0, s

i
1) at the ith round of the protocol.

P1 then computes and sends mP1 =
⊕σ

i=1 s
i
x[i] to P2. P2 compares mP1 with

it’s own mP2 which it can compute in the same way using x as selection bits for
the random strings. This allows P2 to determine x = y iff mP2 = mP1 . Note
that it’s possible to use a different base-N representation of x and y for selection
which can result in a more optimal

(
N
1

)
OT σ

ℓ protocol for some different choice
of N .

5

Private set inclusion. We can extend PEQT to the where P1 has an input
set X = {x1, . . . , xn} and P2 has a single input y. We could naively run PEQT
for each xi ∈ X for all i ≤ n, but we can actually do better. Consider for some
base-N that we can engage in

(
N
1

)
OT t

ℓn where t times, we exchange random
strings of size ℓn.

P2 obtains siy[i] as before but where siy[i][j] represents the j-th substring for
all j ≤ n. We now have a random value pertaining to the i-th bit of xj if
we’re considering base-N where N = 2. Similar to before, P1 can compute
mP1 [j] =

⊕t
i=1 s

i
xj [i]

[j] and send mP1 to P2 where |mP1 | = ℓn. P2 can then
compute mP2 [j] =

⊕t
i=1 s

i
y[i] and know mP2 [j] ∈ mP1 iff y ∈ X. We can further

optimize the OTs to that of PEQT by shrinking the length of the exchanged
ℓn-bit strings down to ℓ and expand them using a PRG.

Private set intersection. To obtain X ∩ Y we can invoke the above private
set inclusion protocol for each value of y ∈ Y . Correctness and security follow
directly from the PEQT protocol. Note that the protocol becomes inefficient as
n grows, increasing the amount of communication due to increasing number of
OTs. We can reduce the number of OTs by limiting the number comparisions
if we use of Cuckoo hashing.

Security. In the case of PEQT, the security of P2 comes from the fact that P1

only learns the random values generated in the OTs so we can simulate the view
of P1 by randomly sampling these values. Considering the security of P1, the
view of P2 is the set of random values output from each OT corresponding to
it’s σ selections using the value y along with the value mP1 which is the XOR of
all ℓ-bit strings using the x of P2 for selection. Therefore, P2 only learns x when
x = y and mP1 = mP2 , otherwise mP1 looks random. To simulate the view of
P2 we can either send a random value when x 6= y or the exact value of mP2

when x = y. The same simulation argument extends to private set inclusion
and subsequently the full protocol.

2.4 Private Matching from Homomorphic Encryption
We can obtain two-party and multi-party PSI from homomorphic encryption
[7] like Pallier, which allows for addition and multiplication by a constant. This
idea from 2004 relies on oblivious polynomial evaluation (OPE), where a re-
ceiver R can encrypt the coefficients of a polynomial P , which a sender S can
evaluate on a private input x, and where only R can recover the result. Note
that R doesn’t learn the input of S and S doesn’t learn the actual polynomial P .

Protocol. The protocol starts with the client C choosing a homomorphic
encryption scheme and publishing it’s public key and public parameters. C
then computes a polynomial P s.t. the roots of the polynomial are the val-
ues of it’s input set Y = {y0, . . . , yn}. This can be done easily by computing

6

P (y) = (x1 − y) . . . (xn − y) =
∑n

i=0 αiy
i. C then sends the homomorphic

encryption of the coefficients of P to the server S.
S evaluates the polynomial P on it’s own input zi ∈ Z = {z0, . . . , zm} for all

i ≤ m, multiplies each result by a random number, and adds it to an encryption
of zi. This is equivalent to S computing Enc(ri · P (zi) + zi) explained above.
C then permutes all computed values and sends them to S who can decrypt
and compare each value to the values in it’s own set Y . Note that since any
yj for some j ≤ n is a root of the polynomial P , then P (yj) = 0, and so
Enc(ri · P (zi) + zi) = Enc(zi) = Enc(yj) iff zi = yj for some i ≤ m.

The dominating cost in this scheme is the number of exponentiations in the
homomorphic encryption scheme. We can reduce this number by reducing the
domain of the inputs and by using Horner’s rule when evaluating the polynomial
to remove large exponents. Computing high-degree polynomials by C is also ex-
pensive but this can be reduced by using balanced hashing or Cuckoo hashing.
Balanced hashing assigns each input item to one of a number of bins B, where
each bin has no more than M items. We can build low-degree polynomials for
a limited number of input items per bin and evaluate those instead. We also
make sure each bin has M items exactly by adding an additional number of zero
roots to hide the number of items per bin.

Security. The privacy of C comes from the fact that S only sees semantically-
secure, homomorphic encryptions of the coefficients of P . Therefore, to simulate
the view of S we can randomly sample any coefficients which we encrypt and
send to S.

The Privacy of S comes from the fact that C only receives “meaningful”
encryptions when zi = yj for some i ≤ m and j ≤ n, and otherwise encryptions
of random values. Given values in the intersection, the simulator can just en-
crypt these values and send them to S. For values not in the intersection, the
simulator can encrypt a randomly sampled value which is distrubted the same,
and send that to S.

Variants. We define fuzzy search to be where C would like to obtain a row of
attributes from a database held by S. Consider where C has a set of attributes
Z and S has a set of attributes Y for some row in the database. The protocol
is identical to before except that S will compute Enc(ri · P (zi) + si) where si
is the i-th secret share of Y for i ≤ t in a t-threshold secret sharing scheme. If
the number of matches is ≤ t then the shares are enough for C to recover Y .

2.5 Multi-party PSI from Symmetric-Key Techniques
Kolesnikov et. al [10] introduced a multi-party PSI protocol in 2017 for n ≥ 2
by introducing the notion of a new primitive, programmable oblivious pseduo-
random funtcion (OPPRF). The security we want to achieve is that each party
Pi learns the intersection

∩n
=1 Xi at the end of the protocol π but nothing else.

Functionality:

7

• n parties, Pi to Pn all with a set size m.
• Wait for input Xi = {x1

i , . . . , x
m
i } from each party Pi.

• Output
∩n

i=1 Xi to all parties.

Two-party protocol. The idea is that each party can use an OPPRF to
program a set of shares that addively XOR to zero for each value in their input
set. If each party evaluates such an OPPRF with each other on the same input
value, then at the end of the protocol when these shares are collected, all shares
for that value across all parties will also XOR to zero.

There are two phases of the protocol, a conditional zero-sharing phase and
conditional reconstruction phase. We consider what happens in the two-party
case first to make things simpler. In conditional zero-sharing, party P1 creates
a mapping to shares S1(x

1
k) = sk where x1

k ∈ X1 is some k-th item in the set
X1 of P1 and sk is a random string. These shares have the property s.t. if
x ∈

∩n
i=1 Xi, in this case x ∈ X1 ∩X2, the corresponding shares XOR to zero.

P1 then programs an OPPRF s.t when queried by P2 on x2
k, it outputs some

s′k = S2(x
2
k). If the parties share x1

k = x2
k then, both parties share the same

mapping and we have that S1(x
1
k) = S2(x

2
k) = sk.

In conditional reconstruction, party P1 acts as a special “dealer” to collect
all the shares that pertain to it’s input set X1 from the other party P2. Party
P2 programs an OPPRF again, s.t. when queried on x1

k it will output the same
value S2(x

1
k) = S1(x

1
k) = sk when x1

k ∈ X2. Otherwise it will output some value
s′k which is mapped randomly. If x1

k = x2
k, then S2(x

1
k)⊕ S1(x

1
k) = sk ⊕ sk = 0

and so P1 knows x1
k is in the intersection.

Multi-party protocol. We can see how the above two-party example can be
expanded to n > 2 parties. In the conditional zero-sharing phase, each sender
Pi creates n shares [sik] for each xi

k ∈ Xi and programs an OPPRF that every
other Pj party will evaluate as the receiver. These randomly generated shares
have the additive property where

⊕n
j=1 s

i,j
k = 0 for all shares of some xi

k sent
from Pi to Pj . When the “dealer” collects all shares from the other n−1 parties
for a given input, and this input was shared between them all,

⊕n
i=1[s

i
k] = 0

due the additive XOR property.
It’s important to note that OPPRF constructions, which themselves rely on

an efficient OPRF, are efficient only when the number of programmed points is
small. This limitation is overcome by using a variant of Cuckoo hashing which
has no stash and ensures one item per bin with high probability. This allows us
to reduce the number of comparisons made between items and limit the number
of programmed points to t = 1.

Security. We consider two groups, the adversaries A and honest parties H, and
two general cases. In the first case, all parties in A have x but not all parties in
H have x. When |H| = 1, trivially the adversaries can learn the value of x given
the output from the protocol. When |H| > 1, some honest party Pi has not
programmed the value of x in their OPPRF. Security of the OPPRF ensures

8

that any party in A learns nothing about which party this is. This holds after
the first phase or the second phase in the role of the “dealer”.

In the second case, not all parties in A have x. Since some adversary in A
doesn’t have x, each honest party Pi will have a uniformly distributed Si(x)
value for x due to that party. Then in the conditional reconstruction phase,
values sent to the “dealer” are either programmed on x or not. Security of the
OPPRF ensures that in both phases, the adversary can’t distinguish between
shares programmed or not programmed on x.

2.6 Structure-Aware PSI and Fuzzy Matching
A new paradigm called structure-aware PSI [8] was first introduced in 2022,
reducing the problem to that of developing an efficient function secret-sharing
(FSS) scheme. In this setting we want to learn the intersection of two sets A∩B,
where Alice has a structured set A, and Bob has an unstructured set B.

That paper introduces the notion of weak Bolean Function Secret Sharing
(bFSS) which is a weaker notion of FSS, allowing for a more efficient protocol
that scales with the description of the structured set. We cover the high-level
details of the protocol assuming the properties of weak bFSS indicator functions
for a family of sets.

Protocol. The general idea is that we can instantiate PSI using bFSS, where f
is an indicator function for set membership. We denote the size of a share as σ
which dominates the communication cost and is porportional to the description
size d of the structured set. We note that the more structure we have, the
smaller the description relative to the cardinality of the structured set.

Alice will first use the bFSS to compute security parameter κ independent
sharings of her structured set A as (k

(i)
0 , k

(i)
1) ← Share(A). Bob then chooses

a random string s ← {0, 1}κ where each bit of s is used as a selection bit in κ

instances of OT, where Bob would like to learn each share k
(i)
si for all i where

1 ≤ i ≤ κ. Bob defines a function F (b) = H(Eval(k
(1)
s1 , b), . . . , Eval(k

(κ)
sκ , b)),

computes F (b) for all b ∈ B, and sends all such F (b) values to Alice. If b = a,
then by correctness of the bFSS, we have that Eval(k

(i)
∗ , b) = Eval(k

(i)
∗ , a)

for any share k
(i)
∗ , where k

(i)
∗ = k

(i)
0 = k

(i)
1 for all i. Alice can then com-

pute F (a) = H(Eval(k
(1)
0 , a), . . . , Eval(k

(κ)
0 , a)) for all a ∈ A and know that

F (a) = F (b) if and only if a = b.

Security. The security of Alice comes from the fact that Bob only sees a single
FSS share per OT instance. By security of the FSS, a single share leaks nothing
about the structured set A. The security of Bob comes from the fact that Alice
doesn’t know Bob’s selection string s. Even though Alice has all the shares,
by security of the FSS, if some b /∈ A, then Eval(k

(i)
∗ , b) 6= Eval(k

(i)
∗ , a) for all

a ∈ A, and Alice would have to guess s of which the the probability is negl(κ).

9

Application. The primary and practical application given as an example is
ridesharing, where we want to privately match a person with available cars
within some distance δ threshold. Using structure-aware PSI for structured sets,
we can represent this set geometrically as a union of ℓ∞ balls. Constructions
for more complex distance metrics like ℓ1 and ℓ2 are also possible.

2.7 Updatable Private Set Intersection
Another paradigm is that of updatable PSI (UPSI), where parties may add or
remove items from their sets over time, while maintaining an intersection in-
variant. Newer work [1] defines PSI in two restricted models, that of UPSI with
addition and UPSI with weak deletion. UPSI with addition allows each party
only to add items to their sets while weak deletion allows adding of items in
addition to deleting old items after t days. We focus on the simplest form, UPSI
with addition, in a two-sided protocol.

Functionality:
• Two parties, P1 with X = ∅, P2 with Y = ∅.
• Wait for input Xd of size Nd from party P1 where Xd ∩X = ∅.
• Wait for input Yd of size Nd from party P2 where Yd ∩ Y = ∅.
• On input from both, updates X = X ∪Xd, Y = Y ∪ Yd.
• Computes Id = X ∩ Y and ouputs Id to both parties.

The size of the update set on any day d is denoted Nd. This definition assumes
for simplicity that items in the update are never duplicates and that both parties
add the same number of items on each day. We note that naively we can achieve
this functionality by rerunning any two-sided PSI protocol anytime there’s an
update. The goal of any UPSI protocol is therefore to be more efficient than
this while maintining the same security.

References
[1] Saikrishna Badrinarayanan, Peihan Miao, and Tiancheng Xie. Updatable

private set intersection. Cryptology ePrint Archive, Paper 2021/1349, 2021.
[2] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In

EUROCRYPT (2), pages 337–367. Springer, 2015.
[3] Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseu-

dorandom functions. Cryptology ePrint Archive, Paper 2022/302, 2022.
[4] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection

meets big data: an efficient and scalable protocol. In Proceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Security, CCS
’13, page 789–800, New York, NY, USA, 2013. Association for Computing
Machinery.

[5] David Evans, Vladimir Kolesnikov, and Mike Rosulek. A Pragmatic Intro-
duction to Secure Multi-Party Computation, pages 26–63. NOW Publishers,
2018.

10

[6] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Key-
word search and oblivious pseudorandom functions. In Theory of Cryptog-
raphy, Second Theory of Cryptography Conference, TCC 2005, Cambridge,
MA, USA, February 10-12, 2005, Proceedings, volume 3378 of Lecture
Notes in Computer Science, pages 303–324. Springer, 2005.

[7] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan L. Camenisch,
editors, Advances in Cryptology - EUROCRYPT 2004, pages 1–19, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[8] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware pri-
vate set intersection, with applications to fuzzy matching. Cryptology
ePrint Archive, Paper 2022/1011, 2022.

[9] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing pri-
vacy and trust in electronic communities. In Proceedings of the 1st ACM
Conference on Electronic Commerce, EC ’99, page 78–86, New York, NY,
USA, 1999. Association for Computing Machinery.

[10] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, and
Ni Trieu. Practical multi-party private set intersection from symmetric-
key techniques. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17, page 1257–1272, New
York, NY, USA, 2017. Association for Computing Machinery.

[11] Marcin Nagy, Emiliano De Cristofaro, Alexandra Dmitrienko, N. Asokan,
and Ahmad-Reza Sadeghi. Do i know you? efficient and privacy-preserving
common friend-finder protocols and applications. In Proceedings of the 29th
Annual Computer Security Applications Conference, ACSAC ’13, page 159–
168, New York, NY, USA, 2013. Association for Computing Machinery.

[12] R. Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms,
51:122–144, 2001.

[13] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set
intersection based on OT extension. Cryptology ePrint Archive, Paper
2014/447, 2014.

A Primitives
A.1 Oblivious Transfer
We start by explaining oblivious transfer (OT) [5] because of it’s usefulness
in building protocols and other primitives. We show an OPRF, OPPRF, and
OPRG construction later in this section which all rely on OT and a more effcient
form of batching called OT extension.

A.1.1 1-out-of-2 OT

The simplest form of OT involves two parties, a sender S and receiver R, where
R can request a single secret from S who has two secrets (s1, s2). For a private

11

choice of b ∈ {0, 1} by R, we require that R receives sb from S where R doesn’t
learn sb−1 and S learns nothing about b.

Functionality:
• Two parties: Sender S and Receiver R.
• S has two secrets, x0, x1 ∈ {0, 1}n.
• R has a selection bit, b ∈ {0, 1}.
• R receives xb, S receives ⊥.

Protocol. We can implement the above functionality using public-key cryp-
tography, where we it’s poossible to randomly sample public keys without a
secret key. First, R generates a public-private key pair sk, pk and samples a
random public key (without a secret key), pk′, from the public key space. If
b = 0, R sends the pair (pk, pk′) to S, otherwise (b = 1) and R sends the
pair (pk′, pk). S receives (pk0, pk1) and sends back to R the two encryptions
e0 = Encpk0(x0), e1 = Encpk1(x1). Finally, R receives e0, e1 and decrypts the
ciphertext eb using sk. Note that R is unable to decrypt the second ciphertext
as it does not have the corresponding secret key.

Security. The privacy of R is determined by the view of S who only sees two
public keys. The simulator can randomly sample two public keys which it sends
to S. Since S doesn’t have a secret key, these public keys look the same as those
in the real protocol.

The privacy of S is determined by the view of R who sees two encryptions
e0, e1, where it can decrypt only one of them with pk. The simulator can sample
sk, pk and pk′, encrypting the value of xb with pk, and 0 with pk′. R can use
sk to decrypt eb = Encpk(xb) and by the security of the encryption scheme,
eb−1 = Encpk′(0) ≈ Encpk′(xb−1).

A.1.2 Random OT

Functionality:
• Two parties: Sender S and Receiver R.
• S generates two secrets, x0, x1

R← {0, 1}n uniformly.
• R has a selection bit, b ∈ {0, 1}.
• R receives xb, S receives ⊥.

Random OT is the same as the basic OT protocol above, except that the secrets
x0, x1 are randomly sampled during the protocol. This small change allows us to
reduce the amount of communication needed between S to R in the last round.
Some of the PSI protocols we review also use the protocol-time randomness
generation property to reduce some of the necessary computation.

A.1.3 OT extension

OT can be extended [5] from 1-out-of-2 OT to 1-out-of-n OT, 1-out-of-2ℓ OT,
and 1-out-of-∞ OT. If we have a protocol which requires many OTs, then we

12

must efficiently generate them for the protocol to be efficient. OT extension
provides a way to generate some large number of m OTs using only some con-
stant number of k base OTs. These protocols only require a constant number
of expensive, public-key operations, and leverage more efficient, symmetric-key
operations instead.

A.2 OPE
Oblivious polynomial evaluation (OPE) allows for two parties to interactively
evaluate a polynomial P . P1 has some private polynomial P and P2 has a some
private input x. We want that P1 learns the result P (x) without learning x and
that P2 doesn’t learn the polynomial P .

Functionality:
• Two parties, P1 and P2.
• P1 holds a a polynomial P ; P2 holds an evaluation point x.
• P1 outputs P (x); P2 outputs nothing.

Protocol. One method of building OPE uses homomorphic encryption by
having P1 encrypt the coefficients of P representing some new polynomial P ′,
which is then sent to P2. P2 can then evaluate the polynomial P ′ where for the
output on any point y we have P ′(y) = Enc(P (y)). P2 sends Enc(P (y)) to P1

who then decrypts to obtain Dec(Enc(P (y))) = P (y).

A.3 OPRF
An oblivious pseudorandom function (OPRF) [6] and more specifically the no-
tion of a strongly-private OPRF, allows for two parties to compute a psuedo-
random function (PRF), where neither party learn each others input and only
one party learns the result.

Functionality:
• Two parties, P1 and P2.
• P1 holds an evaluation point w; P2 holds a key r.
• P1 outputs fr(w); P2 outputs nothing.

Protocol. A simple scheme [3] is based on Diffie-Hellman key exchange, which
relies on blind exponentiation to securely implement the ideal functionality.
Alice privately samples a

R← G and sends H(w)
a to Bob for some private evalu-

tation point w. Bob privately samples a key r
R← G and sends H(w)

ar back to
Alice. Finally, Alice computes H(w)

ar·(1/a)
= H(w)

r
= fr(w).

Security. When H is modeled as a random function whose output is in the
range of the group G, this construction is secure under the one-more gap Diffie-
Hellman assumption. Alice can’t determine H(w) given H(w)

a and Bob can’t
determine r given H(w)

ar.

13

A.3.1 OPPRF

An oblivious programmable pseudorandom function (OPPRF) [10] is the same
as an OPRF but with one additional property. It allows the sender S to initially
provide a set of points P which can be programmed and for R to make up to t
queries. When the OPPRF is evaluated by the receiver R on input xi for point
pi, it should output the programmed yi.

Functionality:
• Two parties: Sender S and Receiver R.
• S has a set of points P = {(x1, y1), . . . , (xn, yn)} and (k, hint).
• R has a set of queries (q1, . . . , qt) and F (k, q) for q ∈ Q.
• R receives (hint, F (k, hint, q1), . . . , F (k, hint, qt)).

PPRF. To implement the ideal functionality above, we first consider the notion
of a programmable psuedorandom function (PPRF). We define correctness such
that if a point pi = (xi, yi) is programmed by the S, if the receiver R queries
the PPRF with input xi, then it should always output the programmed yi.

There are a few different ways to instantiate a PPRF, including but not
limited to polynomials and garbled Bloom filters. The intuition is that we can
use either to store a mapping x 7→ y. If y is chosen uniformly then it should be
indistinguishable from the random output of a PRF. We show the construction
for a PPRF F̂ from a basic PRF F and polynomials.

To build F̂ , the sender S generates a set of points P = {(x1, y1), . . . , (xn, yn)}
where yi is chosen uniformly, chooses a random key k for F , and interpolates
a degree n − 1 polynomial l over the points {(x1, y1 ⊕ F (k, x1)), . . . , (xn, yn ⊕
F (k, xn))}. We define the hint to be the coefficients of L and q some input
query where F̂ (k, hint, q) = F (k, q) ⊕ l(q). Correctness follows from the fact
that F (k, q)⊕ l(q) = F (k, q)⊕ yi ⊕ F (k, q) = yi.

Security. Security of the PPRF states that R should not be able to tell
what the programmed points are, given the hint and t outputs. More for-
mally, for the input sets |X1| = |X2| = n and |Q| = t queries we have
that |Pr[APPRF (X1, Q, κ) = 1] − Pr[APPRF (X2, Q, κ) = 1]| = negl(κ). We
make the distinction that each programmed yi is uniformly random while non-
programmed points are pseudorandom.

OPPRF. We can naturally state an OPPRF protocol for F̂ if we have an OPRF
protocol for F . Running the protocol for F , S obtains k and can compute l while
R can compute F̂ (k, hint, q) = F (k, q)⊕p(q) for some query q. Correctness and
security of the OPPRF come directly from the PPRF.

A.4 OPRG
An oblivious pseudorandom generator (OPRG) [13] allows two parties to condi-
tionally generate shared randomness. In the end of the protocol, the OPRG will

14

output a random string to either one, both, or none of the parties depending on
two selection bits, one from each party.

Functionality:
• Two parties, P1 and P2.
• Party Pi has a selection bit bi.
• Generates a random string s.
• Outputs s to Pi if bi = 1, otherwise ⊥.

Importantly, party Pi won’t learn if party Pi−1 received the random string s or
not. We mention that this primitive can be built from random OT extension
but don’t give a construction. We note that this primtive gives us the useful
property that when both b1, b2 = 0, then no party will receive any output, and
so we can ignore computation in that case. This allows us to improve efficiency
of PSI protocols using this primitive.

A.5 Cuckoo hashing
Dynamic data structures like Cuckoo hashing [12] give us a single dictionary
with worst case constant lookup time and efficient space. Many of the protocols
we cover rely on Cuckoo hashing to achieve efficiency in OPRF evaluations by
limiting item comparisons.

Cuckoo hashing provides semi-predictable locations in a distributed environ-
ment. In the context of PSI, we often want to limit comparisons between items
to a small set of relevant inputs. If we can target items by some remote lookup
location, we can limit the number of locations where we need to look for a given
input, leading to a more efficient protocol. Leveraging oblivious primmitives
we’ve already covered, this can be done without leaking information.

Construction. Consider the generic form where we have b bins and a set of k
hash functions h1, . . . , hk where hi : {0, 1}∗ → [1, b] maps an item x to some bin.
Given some item x, we attempt to place item x in bin h1(x). If this bin is empty,
then we place it there and we’re done, otherwise we evict the current value y
before placing it. Now, we attempt to place item y using hi(y) 6= h1(x) where
i ∈ {1, . . . , k}. We keep repeating the above until we have no more collisions
or until some finite number of relocations is reached, at which point we append
the item to a special bin s which we call the stash. We note that stash can have
any number of items in any order depending on the number of collisions.

Depending on the number of bins b and hash functions h, our data structure
will have different properties. With a large number of items, small number of
hash functions, and small number of bins, it’s likely that more items end up in
the stash. Increasing the number of hash functions and bins yields more choices
for mappings which can mean less items in the stash. In the extreme case we
can create a data structure without a stash with high probability.

15

Variants. Cuckoo hashing is a special case of a more general data structure
called balanced hashing. In balanced hashing it’s possible to have more than
one item per bin given some threshold with high probability. Cuckoo hashing
is often used in tandem with simple hashing, where one party maps each input
x to every possible bin b, ensuring matching items between parties will always
be compared.

A.6 Bloom filters
Another useful data structure is the Bloom filter (BF) which gives a way to de-
termine set membership using only a single m string for storage. For a Bloom
filter F , let S be a set where |S| = n, F be an m-bit string, and h1, . . . , hκ be
κ independent hash functions where hi : {0, 1}∗ → [1,m] for 1 ≤ i ≤ m.

Bloom filter. We first initialize the BF where F = 0m. To insert an item y, set
F [hi(y)] = 1 for all i ≤ κ. To check the presence of an item, check F [hi(y)] = 1
for all i ≤ κ and if so, then y is in the Bloom filter with high probability, oth-
erwise it is not. We set the security parameter κ s.t. the probability of a false
positive is ϵ = 2−κ.

Garbled Bloom filter. The garbled Bloom filter (GBF) [4] is a more powerful
extension of the previous idea. For some GBF G, instead of setting single bits
to 1 in an m-bit string, we store generate and store random ℓ-bit strings s.t. if
y is in the GBF then

⊕κ
i=1 G[hi(y)] = y, otherwise it is not.

Similar to before, we initialize G with “uninitialized” values for all i ≤ κ.
To insert an item y, set each unset value G[hi(y)] s.t we maintain the invariant⊕

Gκ
i=1[hi(y)] = y. If some value G[hi(y)] has already been set, we only set

the remaining values such that the invariant holds. We note that with high
probability, G[hi(y)] is not yet set for some i ≤ κ. After all values have been
added to the GBF, we add random values in all of the remaining slots. As with
basic Bloom filters, there is some negligible probability of false positives.

Random garbled Bloom filter. There is one more extended notion called
the random garbled Bloom filter (RGBF). This notion is identical to that of
garbled Bloom filters, except with a change to the invariant

⊕
Rκ

i=1[y] = Uℓ.
Now we have that the result of the XOR operation can be any random value.

Intuitively, if two parties are able to each generate an RGBF interactively,
s.t some of it’s entries are shared between them, then both parties can use it
to determine if they share a value y. Protocols built using this technique gain
efficiency from the fact they can leverage random OT extension which itself is
more efficient.

A.7 Function Secret Sharing
Two-party Function Secret Sharing (FSS) was first introduced by Boyle, Gilboa,
and Ishai [2] in 2015. It allows two parties to distribute shares (f1, f2) of a func-

16

tion f , which individually hide the function f , but where f(x) = f1(x)⊕ f2(x)
for all inputs x. Security of FSS says that we can simulate each individual share
with respect to the security parameter κ. We give the more formal definition
for FSS syntax as stated in the appendix of GRS22 [8].

FSS. A two-party function secret sharing scheme (FSS) for a class of funtions F
with input domain {0, 1}n and co-domain {0, 1}m consists of a pair of algoritms
(Share,Eval) and a security parameter κ.

• (k0, k1) ← Share(1κ, f̂): The randomized share function takes as input
the security parameter κ and the function description f̂ for some function
f ∈ F , and it outputs two keys, representing shares of the function f .

• yp ← Eval(1κ, idx, kidx, x): The deterministic evaluation function takes as
input the security parameter, party index idx ∈ {0, 1}, the corresponding
FSS key kidx, and the input x ∈ {0, 1}n, and it outputs yidx ∈ {0, 1}m.

bFSS. Boolean Function Secret Sharing (bFSS) is a special case of FSS, where
f ∈ F is an indicator function for set membership. The indicator function
evaluates to 0 when the input x is included in the set, and 1 otherwise. bFSS
comes in two flavors, weak (p, k)-bFSS and strong bFSS (i.e. (1, 1)-bFSS), where
p is the false positive error probability and k is the share output length. We note
that weak (p, k)-bFSS can be built and used to create more efficient structure-
aware PSI schemes.

17

